// Copyright 2014 PDFium Authors. All rights reserved.
|
// Use of this source code is governed by a BSD-style license that can be
|
// found in the LICENSE file.
|
|
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
|
|
#include "core/fpdfapi/fpdf_page/pageint.h"
|
|
#include <limits.h>
|
|
#include <algorithm>
|
#include <memory>
|
#include <utility>
|
#include <vector>
|
|
#include "core/fpdfapi/fpdf_parser/include/cpdf_array.h"
|
#include "core/fpdfapi/fpdf_parser/include/cpdf_dictionary.h"
|
#include "core/fpdfapi/fpdf_parser/include/cpdf_simple_parser.h"
|
#include "core/fpdfapi/fpdf_parser/include/cpdf_stream.h"
|
#include "core/fpdfapi/fpdf_parser/include/cpdf_stream_acc.h"
|
#include "core/fxcrt/include/fx_safe_types.h"
|
#include "third_party/base/numerics/safe_conversions_impl.h"
|
|
namespace {
|
|
enum PDF_PSOP {
|
PSOP_ADD,
|
PSOP_SUB,
|
PSOP_MUL,
|
PSOP_DIV,
|
PSOP_IDIV,
|
PSOP_MOD,
|
PSOP_NEG,
|
PSOP_ABS,
|
PSOP_CEILING,
|
PSOP_FLOOR,
|
PSOP_ROUND,
|
PSOP_TRUNCATE,
|
PSOP_SQRT,
|
PSOP_SIN,
|
PSOP_COS,
|
PSOP_ATAN,
|
PSOP_EXP,
|
PSOP_LN,
|
PSOP_LOG,
|
PSOP_CVI,
|
PSOP_CVR,
|
PSOP_EQ,
|
PSOP_NE,
|
PSOP_GT,
|
PSOP_GE,
|
PSOP_LT,
|
PSOP_LE,
|
PSOP_AND,
|
PSOP_OR,
|
PSOP_XOR,
|
PSOP_NOT,
|
PSOP_BITSHIFT,
|
PSOP_TRUE,
|
PSOP_FALSE,
|
PSOP_IF,
|
PSOP_IFELSE,
|
PSOP_POP,
|
PSOP_EXCH,
|
PSOP_DUP,
|
PSOP_COPY,
|
PSOP_INDEX,
|
PSOP_ROLL,
|
PSOP_PROC,
|
PSOP_CONST
|
};
|
|
class CPDF_PSEngine;
|
class CPDF_PSProc;
|
|
class CPDF_PSOP {
|
public:
|
explicit CPDF_PSOP(PDF_PSOP op) : m_op(op), m_value(0) {
|
ASSERT(m_op != PSOP_CONST);
|
ASSERT(m_op != PSOP_PROC);
|
}
|
explicit CPDF_PSOP(FX_FLOAT value) : m_op(PSOP_CONST), m_value(value) {}
|
explicit CPDF_PSOP(std::unique_ptr<CPDF_PSProc> proc)
|
: m_op(PSOP_PROC), m_value(0), m_proc(std::move(proc)) {}
|
|
FX_FLOAT GetFloatValue() const {
|
if (m_op == PSOP_CONST)
|
return m_value;
|
|
ASSERT(false);
|
return 0;
|
}
|
CPDF_PSProc* GetProc() const {
|
if (m_op == PSOP_PROC)
|
return m_proc.get();
|
ASSERT(false);
|
return nullptr;
|
}
|
|
PDF_PSOP GetOp() const { return m_op; }
|
|
private:
|
const PDF_PSOP m_op;
|
const FX_FLOAT m_value;
|
std::unique_ptr<CPDF_PSProc> m_proc;
|
};
|
|
class CPDF_PSProc {
|
public:
|
CPDF_PSProc() {}
|
~CPDF_PSProc() {}
|
|
FX_BOOL Parse(CPDF_SimpleParser* parser);
|
FX_BOOL Execute(CPDF_PSEngine* pEngine);
|
|
private:
|
std::vector<std::unique_ptr<CPDF_PSOP>> m_Operators;
|
};
|
|
const uint32_t PSENGINE_STACKSIZE = 100;
|
|
class CPDF_PSEngine {
|
public:
|
CPDF_PSEngine();
|
~CPDF_PSEngine();
|
|
FX_BOOL Parse(const FX_CHAR* str, int size);
|
FX_BOOL Execute() { return m_MainProc.Execute(this); }
|
FX_BOOL DoOperator(PDF_PSOP op);
|
void Reset() { m_StackCount = 0; }
|
void Push(FX_FLOAT value);
|
void Push(int value) { Push((FX_FLOAT)value); }
|
FX_FLOAT Pop();
|
uint32_t GetStackSize() const { return m_StackCount; }
|
|
private:
|
FX_FLOAT m_Stack[PSENGINE_STACKSIZE];
|
uint32_t m_StackCount;
|
CPDF_PSProc m_MainProc;
|
};
|
|
FX_BOOL CPDF_PSProc::Execute(CPDF_PSEngine* pEngine) {
|
for (size_t i = 0; i < m_Operators.size(); ++i) {
|
const PDF_PSOP op = m_Operators[i]->GetOp();
|
if (op == PSOP_PROC)
|
continue;
|
|
if (op == PSOP_CONST) {
|
pEngine->Push(m_Operators[i]->GetFloatValue());
|
continue;
|
}
|
|
if (op == PSOP_IF) {
|
if (i == 0 || m_Operators[i - 1]->GetOp() != PSOP_PROC)
|
return FALSE;
|
|
if (static_cast<int>(pEngine->Pop()))
|
m_Operators[i - 1]->GetProc()->Execute(pEngine);
|
} else if (op == PSOP_IFELSE) {
|
if (i < 2 || m_Operators[i - 1]->GetOp() != PSOP_PROC ||
|
m_Operators[i - 2]->GetOp() != PSOP_PROC) {
|
return FALSE;
|
}
|
size_t offset = static_cast<int>(pEngine->Pop()) ? 2 : 1;
|
m_Operators[i - offset]->GetProc()->Execute(pEngine);
|
} else {
|
pEngine->DoOperator(op);
|
}
|
}
|
return TRUE;
|
}
|
|
CPDF_PSEngine::CPDF_PSEngine() {
|
m_StackCount = 0;
|
}
|
CPDF_PSEngine::~CPDF_PSEngine() {}
|
void CPDF_PSEngine::Push(FX_FLOAT v) {
|
if (m_StackCount == PSENGINE_STACKSIZE) {
|
return;
|
}
|
m_Stack[m_StackCount++] = v;
|
}
|
FX_FLOAT CPDF_PSEngine::Pop() {
|
if (m_StackCount == 0) {
|
return 0;
|
}
|
return m_Stack[--m_StackCount];
|
}
|
const struct PDF_PSOpName {
|
const FX_CHAR* name;
|
PDF_PSOP op;
|
} PDF_PSOpNames[] = {{"add", PSOP_ADD}, {"sub", PSOP_SUB},
|
{"mul", PSOP_MUL}, {"div", PSOP_DIV},
|
{"idiv", PSOP_IDIV}, {"mod", PSOP_MOD},
|
{"neg", PSOP_NEG}, {"abs", PSOP_ABS},
|
{"ceiling", PSOP_CEILING}, {"floor", PSOP_FLOOR},
|
{"round", PSOP_ROUND}, {"truncate", PSOP_TRUNCATE},
|
{"sqrt", PSOP_SQRT}, {"sin", PSOP_SIN},
|
{"cos", PSOP_COS}, {"atan", PSOP_ATAN},
|
{"exp", PSOP_EXP}, {"ln", PSOP_LN},
|
{"log", PSOP_LOG}, {"cvi", PSOP_CVI},
|
{"cvr", PSOP_CVR}, {"eq", PSOP_EQ},
|
{"ne", PSOP_NE}, {"gt", PSOP_GT},
|
{"ge", PSOP_GE}, {"lt", PSOP_LT},
|
{"le", PSOP_LE}, {"and", PSOP_AND},
|
{"or", PSOP_OR}, {"xor", PSOP_XOR},
|
{"not", PSOP_NOT}, {"bitshift", PSOP_BITSHIFT},
|
{"true", PSOP_TRUE}, {"false", PSOP_FALSE},
|
{"if", PSOP_IF}, {"ifelse", PSOP_IFELSE},
|
{"pop", PSOP_POP}, {"exch", PSOP_EXCH},
|
{"dup", PSOP_DUP}, {"copy", PSOP_COPY},
|
{"index", PSOP_INDEX}, {"roll", PSOP_ROLL}};
|
|
FX_BOOL CPDF_PSEngine::Parse(const FX_CHAR* str, int size) {
|
CPDF_SimpleParser parser((uint8_t*)str, size);
|
CFX_ByteStringC word = parser.GetWord();
|
if (word != "{") {
|
return FALSE;
|
}
|
return m_MainProc.Parse(&parser);
|
}
|
FX_BOOL CPDF_PSProc::Parse(CPDF_SimpleParser* parser) {
|
while (1) {
|
CFX_ByteStringC word = parser->GetWord();
|
if (word.IsEmpty()) {
|
return FALSE;
|
}
|
if (word == "}") {
|
return TRUE;
|
}
|
if (word == "{") {
|
std::unique_ptr<CPDF_PSProc> proc(new CPDF_PSProc);
|
std::unique_ptr<CPDF_PSOP> op(new CPDF_PSOP(std::move(proc)));
|
m_Operators.push_back(std::move(op));
|
if (!m_Operators.back()->GetProc()->Parse(parser)) {
|
return FALSE;
|
}
|
} else {
|
bool found = false;
|
for (const PDF_PSOpName& op_name : PDF_PSOpNames) {
|
if (word == CFX_ByteStringC(op_name.name)) {
|
std::unique_ptr<CPDF_PSOP> op(new CPDF_PSOP(op_name.op));
|
m_Operators.push_back(std::move(op));
|
found = true;
|
break;
|
}
|
}
|
if (!found) {
|
std::unique_ptr<CPDF_PSOP> op(new CPDF_PSOP(FX_atof(word)));
|
m_Operators.push_back(std::move(op));
|
}
|
}
|
}
|
}
|
|
FX_BOOL CPDF_PSEngine::DoOperator(PDF_PSOP op) {
|
int i1, i2;
|
FX_FLOAT d1, d2;
|
switch (op) {
|
case PSOP_ADD:
|
d1 = Pop();
|
d2 = Pop();
|
Push(d1 + d2);
|
break;
|
case PSOP_SUB:
|
d2 = Pop();
|
d1 = Pop();
|
Push(d1 - d2);
|
break;
|
case PSOP_MUL:
|
d1 = Pop();
|
d2 = Pop();
|
Push(d1 * d2);
|
break;
|
case PSOP_DIV:
|
d2 = Pop();
|
d1 = Pop();
|
Push(d1 / d2);
|
break;
|
case PSOP_IDIV:
|
i2 = (int)Pop();
|
i1 = (int)Pop();
|
Push(i1 / i2);
|
break;
|
case PSOP_MOD:
|
i2 = (int)Pop();
|
i1 = (int)Pop();
|
Push(i1 % i2);
|
break;
|
case PSOP_NEG:
|
d1 = Pop();
|
Push(-d1);
|
break;
|
case PSOP_ABS:
|
d1 = Pop();
|
Push((FX_FLOAT)FXSYS_fabs(d1));
|
break;
|
case PSOP_CEILING:
|
d1 = Pop();
|
Push((FX_FLOAT)FXSYS_ceil(d1));
|
break;
|
case PSOP_FLOOR:
|
d1 = Pop();
|
Push((FX_FLOAT)FXSYS_floor(d1));
|
break;
|
case PSOP_ROUND:
|
d1 = Pop();
|
Push(FXSYS_round(d1));
|
break;
|
case PSOP_TRUNCATE:
|
i1 = (int)Pop();
|
Push(i1);
|
break;
|
case PSOP_SQRT:
|
d1 = Pop();
|
Push((FX_FLOAT)FXSYS_sqrt(d1));
|
break;
|
case PSOP_SIN:
|
d1 = Pop();
|
Push((FX_FLOAT)FXSYS_sin(d1 * FX_PI / 180.0f));
|
break;
|
case PSOP_COS:
|
d1 = Pop();
|
Push((FX_FLOAT)FXSYS_cos(d1 * FX_PI / 180.0f));
|
break;
|
case PSOP_ATAN:
|
d2 = Pop();
|
d1 = Pop();
|
d1 = (FX_FLOAT)(FXSYS_atan2(d1, d2) * 180.0 / FX_PI);
|
if (d1 < 0) {
|
d1 += 360;
|
}
|
Push(d1);
|
break;
|
case PSOP_EXP:
|
d2 = Pop();
|
d1 = Pop();
|
Push((FX_FLOAT)FXSYS_pow(d1, d2));
|
break;
|
case PSOP_LN:
|
d1 = Pop();
|
Push((FX_FLOAT)FXSYS_log(d1));
|
break;
|
case PSOP_LOG:
|
d1 = Pop();
|
Push((FX_FLOAT)FXSYS_log10(d1));
|
break;
|
case PSOP_CVI:
|
i1 = (int)Pop();
|
Push(i1);
|
break;
|
case PSOP_CVR:
|
break;
|
case PSOP_EQ:
|
d2 = Pop();
|
d1 = Pop();
|
Push((int)(d1 == d2));
|
break;
|
case PSOP_NE:
|
d2 = Pop();
|
d1 = Pop();
|
Push((int)(d1 != d2));
|
break;
|
case PSOP_GT:
|
d2 = Pop();
|
d1 = Pop();
|
Push((int)(d1 > d2));
|
break;
|
case PSOP_GE:
|
d2 = Pop();
|
d1 = Pop();
|
Push((int)(d1 >= d2));
|
break;
|
case PSOP_LT:
|
d2 = Pop();
|
d1 = Pop();
|
Push((int)(d1 < d2));
|
break;
|
case PSOP_LE:
|
d2 = Pop();
|
d1 = Pop();
|
Push((int)(d1 <= d2));
|
break;
|
case PSOP_AND:
|
i1 = (int)Pop();
|
i2 = (int)Pop();
|
Push(i1 & i2);
|
break;
|
case PSOP_OR:
|
i1 = (int)Pop();
|
i2 = (int)Pop();
|
Push(i1 | i2);
|
break;
|
case PSOP_XOR:
|
i1 = (int)Pop();
|
i2 = (int)Pop();
|
Push(i1 ^ i2);
|
break;
|
case PSOP_NOT:
|
i1 = (int)Pop();
|
Push((int)!i1);
|
break;
|
case PSOP_BITSHIFT: {
|
int shift = (int)Pop();
|
int i = (int)Pop();
|
if (shift > 0) {
|
Push(i << shift);
|
} else {
|
Push(i >> -shift);
|
}
|
break;
|
}
|
case PSOP_TRUE:
|
Push(1);
|
break;
|
case PSOP_FALSE:
|
Push(0);
|
break;
|
case PSOP_POP:
|
Pop();
|
break;
|
case PSOP_EXCH:
|
d2 = Pop();
|
d1 = Pop();
|
Push(d2);
|
Push(d1);
|
break;
|
case PSOP_DUP:
|
d1 = Pop();
|
Push(d1);
|
Push(d1);
|
break;
|
case PSOP_COPY: {
|
int n = static_cast<int>(Pop());
|
if (n < 0 || m_StackCount + n > PSENGINE_STACKSIZE ||
|
n > static_cast<int>(m_StackCount))
|
break;
|
for (int i = 0; i < n; i++)
|
m_Stack[m_StackCount + i] = m_Stack[m_StackCount + i - n];
|
m_StackCount += n;
|
break;
|
}
|
case PSOP_INDEX: {
|
int n = static_cast<int>(Pop());
|
if (n < 0 || n >= static_cast<int>(m_StackCount))
|
break;
|
Push(m_Stack[m_StackCount - n - 1]);
|
break;
|
}
|
case PSOP_ROLL: {
|
int j = static_cast<int>(Pop());
|
int n = static_cast<int>(Pop());
|
if (m_StackCount == 0)
|
break;
|
if (n < 0 || n > static_cast<int>(m_StackCount))
|
break;
|
if (j < 0) {
|
for (int i = 0; i < -j; i++) {
|
FX_FLOAT first = m_Stack[m_StackCount - n];
|
for (int ii = 0; ii < n - 1; ii++)
|
m_Stack[m_StackCount - n + ii] = m_Stack[m_StackCount - n + ii + 1];
|
m_Stack[m_StackCount - 1] = first;
|
}
|
} else {
|
for (int i = 0; i < j; i++) {
|
FX_FLOAT last = m_Stack[m_StackCount - 1];
|
int ii;
|
for (ii = 0; ii < n - 1; ii++)
|
m_Stack[m_StackCount - ii - 1] = m_Stack[m_StackCount - ii - 2];
|
m_Stack[m_StackCount - ii - 1] = last;
|
}
|
}
|
break;
|
}
|
default:
|
break;
|
}
|
return TRUE;
|
}
|
|
// See PDF Reference 1.7, page 170, table 3.36.
|
bool IsValidBitsPerSample(uint32_t x) {
|
switch (x) {
|
case 1:
|
case 2:
|
case 4:
|
case 8:
|
case 12:
|
case 16:
|
case 24:
|
case 32:
|
return true;
|
default:
|
return false;
|
}
|
}
|
|
// See PDF Reference 1.7, page 170.
|
FX_FLOAT PDF_Interpolate(FX_FLOAT x,
|
FX_FLOAT xmin,
|
FX_FLOAT xmax,
|
FX_FLOAT ymin,
|
FX_FLOAT ymax) {
|
FX_FLOAT divisor = xmax - xmin;
|
return ymin + (divisor ? (x - xmin) * (ymax - ymin) / divisor : 0);
|
}
|
|
class CPDF_PSFunc : public CPDF_Function {
|
public:
|
CPDF_PSFunc() : CPDF_Function(Type::kType4PostScript) {}
|
~CPDF_PSFunc() override {}
|
|
// CPDF_Function
|
FX_BOOL v_Init(CPDF_Object* pObj) override;
|
FX_BOOL v_Call(FX_FLOAT* inputs, FX_FLOAT* results) const override;
|
|
private:
|
CPDF_PSEngine m_PS;
|
};
|
|
FX_BOOL CPDF_PSFunc::v_Init(CPDF_Object* pObj) {
|
CPDF_StreamAcc acc;
|
acc.LoadAllData(pObj->AsStream(), FALSE);
|
return m_PS.Parse(reinterpret_cast<const FX_CHAR*>(acc.GetData()),
|
acc.GetSize());
|
}
|
|
FX_BOOL CPDF_PSFunc::v_Call(FX_FLOAT* inputs, FX_FLOAT* results) const {
|
CPDF_PSEngine& PS = const_cast<CPDF_PSEngine&>(m_PS);
|
PS.Reset();
|
for (uint32_t i = 0; i < m_nInputs; i++)
|
PS.Push(inputs[i]);
|
PS.Execute();
|
if (PS.GetStackSize() < m_nOutputs)
|
return FALSE;
|
for (uint32_t i = 0; i < m_nOutputs; i++)
|
results[m_nOutputs - i - 1] = PS.Pop();
|
return TRUE;
|
}
|
|
} // namespace
|
|
CPDF_SampledFunc::CPDF_SampledFunc() : CPDF_Function(Type::kType0Sampled) {}
|
|
CPDF_SampledFunc::~CPDF_SampledFunc() {}
|
|
FX_BOOL CPDF_SampledFunc::v_Init(CPDF_Object* pObj) {
|
CPDF_Stream* pStream = pObj->AsStream();
|
if (!pStream)
|
return false;
|
|
CPDF_Dictionary* pDict = pStream->GetDict();
|
CPDF_Array* pSize = pDict->GetArrayBy("Size");
|
CPDF_Array* pEncode = pDict->GetArrayBy("Encode");
|
CPDF_Array* pDecode = pDict->GetArrayBy("Decode");
|
m_nBitsPerSample = pDict->GetIntegerBy("BitsPerSample");
|
if (!IsValidBitsPerSample(m_nBitsPerSample))
|
return FALSE;
|
|
m_SampleMax = 0xffffffff >> (32 - m_nBitsPerSample);
|
m_pSampleStream.reset(new CPDF_StreamAcc);
|
m_pSampleStream->LoadAllData(pStream, FALSE);
|
FX_SAFE_UINT32 nTotalSampleBits = 1;
|
m_EncodeInfo.resize(m_nInputs);
|
for (uint32_t i = 0; i < m_nInputs; i++) {
|
m_EncodeInfo[i].sizes = pSize ? pSize->GetIntegerAt(i) : 0;
|
if (!pSize && i == 0)
|
m_EncodeInfo[i].sizes = pDict->GetIntegerBy("Size");
|
nTotalSampleBits *= m_EncodeInfo[i].sizes;
|
if (pEncode) {
|
m_EncodeInfo[i].encode_min = pEncode->GetFloatAt(i * 2);
|
m_EncodeInfo[i].encode_max = pEncode->GetFloatAt(i * 2 + 1);
|
} else {
|
m_EncodeInfo[i].encode_min = 0;
|
m_EncodeInfo[i].encode_max =
|
m_EncodeInfo[i].sizes == 1 ? 1 : (FX_FLOAT)m_EncodeInfo[i].sizes - 1;
|
}
|
}
|
nTotalSampleBits *= m_nBitsPerSample;
|
nTotalSampleBits *= m_nOutputs;
|
FX_SAFE_UINT32 nTotalSampleBytes = nTotalSampleBits;
|
nTotalSampleBytes += 7;
|
nTotalSampleBytes /= 8;
|
if (!nTotalSampleBytes.IsValid() || nTotalSampleBytes.ValueOrDie() == 0 ||
|
nTotalSampleBytes.ValueOrDie() > m_pSampleStream->GetSize()) {
|
return FALSE;
|
}
|
m_DecodeInfo.resize(m_nOutputs);
|
for (uint32_t i = 0; i < m_nOutputs; i++) {
|
if (pDecode) {
|
m_DecodeInfo[i].decode_min = pDecode->GetFloatAt(2 * i);
|
m_DecodeInfo[i].decode_max = pDecode->GetFloatAt(2 * i + 1);
|
} else {
|
m_DecodeInfo[i].decode_min = m_pRanges[i * 2];
|
m_DecodeInfo[i].decode_max = m_pRanges[i * 2 + 1];
|
}
|
}
|
return TRUE;
|
}
|
|
FX_BOOL CPDF_SampledFunc::v_Call(FX_FLOAT* inputs, FX_FLOAT* results) const {
|
int pos = 0;
|
CFX_FixedBufGrow<FX_FLOAT, 16> encoded_input_buf(m_nInputs);
|
FX_FLOAT* encoded_input = encoded_input_buf;
|
CFX_FixedBufGrow<uint32_t, 32> int_buf(m_nInputs * 2);
|
uint32_t* index = int_buf;
|
uint32_t* blocksize = index + m_nInputs;
|
for (uint32_t i = 0; i < m_nInputs; i++) {
|
if (i == 0)
|
blocksize[i] = 1;
|
else
|
blocksize[i] = blocksize[i - 1] * m_EncodeInfo[i - 1].sizes;
|
encoded_input[i] =
|
PDF_Interpolate(inputs[i], m_pDomains[i * 2], m_pDomains[i * 2 + 1],
|
m_EncodeInfo[i].encode_min, m_EncodeInfo[i].encode_max);
|
index[i] = std::min((uint32_t)std::max(0.f, encoded_input[i]),
|
m_EncodeInfo[i].sizes - 1);
|
pos += index[i] * blocksize[i];
|
}
|
FX_SAFE_INT32 bits_to_output = m_nOutputs;
|
bits_to_output *= m_nBitsPerSample;
|
if (!bits_to_output.IsValid())
|
return FALSE;
|
|
FX_SAFE_INT32 bitpos = pos;
|
bitpos *= bits_to_output.ValueOrDie();
|
if (!bitpos.IsValid())
|
return FALSE;
|
|
FX_SAFE_INT32 range_check = bitpos;
|
range_check += bits_to_output.ValueOrDie();
|
if (!range_check.IsValid())
|
return FALSE;
|
|
const uint8_t* pSampleData = m_pSampleStream->GetData();
|
if (!pSampleData)
|
return FALSE;
|
|
for (uint32_t j = 0; j < m_nOutputs; j++) {
|
uint32_t sample =
|
GetBits32(pSampleData, bitpos.ValueOrDie() + j * m_nBitsPerSample,
|
m_nBitsPerSample);
|
FX_FLOAT encoded = (FX_FLOAT)sample;
|
for (uint32_t i = 0; i < m_nInputs; i++) {
|
if (index[i] == m_EncodeInfo[i].sizes - 1) {
|
if (index[i] == 0)
|
encoded = encoded_input[i] * (FX_FLOAT)sample;
|
} else {
|
FX_SAFE_INT32 bitpos2 = blocksize[i];
|
bitpos2 += pos;
|
bitpos2 *= m_nOutputs;
|
bitpos2 += j;
|
bitpos2 *= m_nBitsPerSample;
|
if (!bitpos2.IsValid())
|
return FALSE;
|
uint32_t sample1 =
|
GetBits32(pSampleData, bitpos2.ValueOrDie(), m_nBitsPerSample);
|
encoded += (encoded_input[i] - index[i]) *
|
((FX_FLOAT)sample1 - (FX_FLOAT)sample);
|
}
|
}
|
results[j] =
|
PDF_Interpolate(encoded, 0, (FX_FLOAT)m_SampleMax,
|
m_DecodeInfo[j].decode_min, m_DecodeInfo[j].decode_max);
|
}
|
return TRUE;
|
}
|
|
CPDF_ExpIntFunc::CPDF_ExpIntFunc()
|
: CPDF_Function(Type::kType2ExpotentialInterpolation),
|
m_pBeginValues(nullptr),
|
m_pEndValues(nullptr) {}
|
|
CPDF_ExpIntFunc::~CPDF_ExpIntFunc() {
|
FX_Free(m_pBeginValues);
|
FX_Free(m_pEndValues);
|
}
|
FX_BOOL CPDF_ExpIntFunc::v_Init(CPDF_Object* pObj) {
|
CPDF_Dictionary* pDict = pObj->GetDict();
|
if (!pDict) {
|
return FALSE;
|
}
|
CPDF_Array* pArray0 = pDict->GetArrayBy("C0");
|
if (m_nOutputs == 0) {
|
m_nOutputs = 1;
|
if (pArray0) {
|
m_nOutputs = pArray0->GetCount();
|
}
|
}
|
CPDF_Array* pArray1 = pDict->GetArrayBy("C1");
|
m_pBeginValues = FX_Alloc2D(FX_FLOAT, m_nOutputs, 2);
|
m_pEndValues = FX_Alloc2D(FX_FLOAT, m_nOutputs, 2);
|
for (uint32_t i = 0; i < m_nOutputs; i++) {
|
m_pBeginValues[i] = pArray0 ? pArray0->GetFloatAt(i) : 0.0f;
|
m_pEndValues[i] = pArray1 ? pArray1->GetFloatAt(i) : 1.0f;
|
}
|
m_Exponent = pDict->GetFloatBy("N");
|
m_nOrigOutputs = m_nOutputs;
|
if (m_nOutputs && m_nInputs > INT_MAX / m_nOutputs) {
|
return FALSE;
|
}
|
m_nOutputs *= m_nInputs;
|
return TRUE;
|
}
|
FX_BOOL CPDF_ExpIntFunc::v_Call(FX_FLOAT* inputs, FX_FLOAT* results) const {
|
for (uint32_t i = 0; i < m_nInputs; i++)
|
for (uint32_t j = 0; j < m_nOrigOutputs; j++) {
|
results[i * m_nOrigOutputs + j] =
|
m_pBeginValues[j] +
|
(FX_FLOAT)FXSYS_pow(inputs[i], m_Exponent) *
|
(m_pEndValues[j] - m_pBeginValues[j]);
|
}
|
return TRUE;
|
}
|
|
CPDF_StitchFunc::CPDF_StitchFunc()
|
: CPDF_Function(Type::kType3Stitching),
|
m_pBounds(nullptr),
|
m_pEncode(nullptr) {}
|
|
CPDF_StitchFunc::~CPDF_StitchFunc() {
|
FX_Free(m_pBounds);
|
FX_Free(m_pEncode);
|
}
|
|
FX_BOOL CPDF_StitchFunc::v_Init(CPDF_Object* pObj) {
|
CPDF_Dictionary* pDict = pObj->GetDict();
|
if (!pDict) {
|
return FALSE;
|
}
|
if (m_nInputs != kRequiredNumInputs) {
|
return FALSE;
|
}
|
CPDF_Array* pArray = pDict->GetArrayBy("Functions");
|
if (!pArray) {
|
return FALSE;
|
}
|
uint32_t nSubs = pArray->GetCount();
|
if (nSubs == 0)
|
return FALSE;
|
m_nOutputs = 0;
|
for (uint32_t i = 0; i < nSubs; i++) {
|
CPDF_Object* pSub = pArray->GetDirectObjectAt(i);
|
if (pSub == pObj)
|
return FALSE;
|
std::unique_ptr<CPDF_Function> pFunc(CPDF_Function::Load(pSub));
|
if (!pFunc)
|
return FALSE;
|
// Check that the input dimensionality is 1, and that all output
|
// dimensionalities are the same.
|
if (pFunc->CountInputs() != kRequiredNumInputs)
|
return FALSE;
|
if (pFunc->CountOutputs() != m_nOutputs) {
|
if (m_nOutputs)
|
return FALSE;
|
|
m_nOutputs = pFunc->CountOutputs();
|
}
|
|
m_pSubFunctions.push_back(std::move(pFunc));
|
}
|
m_pBounds = FX_Alloc(FX_FLOAT, nSubs + 1);
|
m_pBounds[0] = m_pDomains[0];
|
pArray = pDict->GetArrayBy("Bounds");
|
if (!pArray)
|
return FALSE;
|
for (uint32_t i = 0; i < nSubs - 1; i++)
|
m_pBounds[i + 1] = pArray->GetFloatAt(i);
|
m_pBounds[nSubs] = m_pDomains[1];
|
m_pEncode = FX_Alloc2D(FX_FLOAT, nSubs, 2);
|
pArray = pDict->GetArrayBy("Encode");
|
if (!pArray)
|
return FALSE;
|
|
for (uint32_t i = 0; i < nSubs * 2; i++)
|
m_pEncode[i] = pArray->GetFloatAt(i);
|
return TRUE;
|
}
|
|
FX_BOOL CPDF_StitchFunc::v_Call(FX_FLOAT* inputs, FX_FLOAT* outputs) const {
|
FX_FLOAT input = inputs[0];
|
size_t i;
|
for (i = 0; i < m_pSubFunctions.size() - 1; i++) {
|
if (input < m_pBounds[i + 1])
|
break;
|
}
|
input = PDF_Interpolate(input, m_pBounds[i], m_pBounds[i + 1],
|
m_pEncode[i * 2], m_pEncode[i * 2 + 1]);
|
int nresults;
|
m_pSubFunctions[i]->Call(&input, kRequiredNumInputs, outputs, nresults);
|
return TRUE;
|
}
|
|
// static
|
std::unique_ptr<CPDF_Function> CPDF_Function::Load(CPDF_Object* pFuncObj) {
|
std::unique_ptr<CPDF_Function> pFunc;
|
if (!pFuncObj)
|
return pFunc;
|
|
int iType = -1;
|
if (CPDF_Stream* pStream = pFuncObj->AsStream())
|
iType = pStream->GetDict()->GetIntegerBy("FunctionType");
|
else if (CPDF_Dictionary* pDict = pFuncObj->AsDictionary())
|
iType = pDict->GetIntegerBy("FunctionType");
|
|
Type type = IntegerToFunctionType(iType);
|
if (type == Type::kType0Sampled)
|
pFunc.reset(new CPDF_SampledFunc());
|
else if (type == Type::kType2ExpotentialInterpolation)
|
pFunc.reset(new CPDF_ExpIntFunc());
|
else if (type == Type::kType3Stitching)
|
pFunc.reset(new CPDF_StitchFunc());
|
else if (type == Type::kType4PostScript)
|
pFunc.reset(new CPDF_PSFunc());
|
|
if (!pFunc || !pFunc->Init(pFuncObj))
|
return std::unique_ptr<CPDF_Function>();
|
return pFunc;
|
}
|
|
// static
|
CPDF_Function::Type CPDF_Function::IntegerToFunctionType(int iType) {
|
switch (iType) {
|
case 0:
|
case 2:
|
case 3:
|
case 4:
|
return static_cast<Type>(iType);
|
default:
|
return Type::kTypeInvalid;
|
}
|
}
|
|
CPDF_Function::CPDF_Function(Type type)
|
: m_pDomains(nullptr), m_pRanges(nullptr), m_Type(type) {}
|
|
CPDF_Function::~CPDF_Function() {
|
FX_Free(m_pDomains);
|
FX_Free(m_pRanges);
|
}
|
|
FX_BOOL CPDF_Function::Init(CPDF_Object* pObj) {
|
CPDF_Stream* pStream = pObj->AsStream();
|
CPDF_Dictionary* pDict = pStream ? pStream->GetDict() : pObj->AsDictionary();
|
|
CPDF_Array* pDomains = pDict->GetArrayBy("Domain");
|
if (!pDomains)
|
return FALSE;
|
|
m_nInputs = pDomains->GetCount() / 2;
|
if (m_nInputs == 0)
|
return FALSE;
|
|
m_pDomains = FX_Alloc2D(FX_FLOAT, m_nInputs, 2);
|
for (uint32_t i = 0; i < m_nInputs * 2; i++) {
|
m_pDomains[i] = pDomains->GetFloatAt(i);
|
}
|
CPDF_Array* pRanges = pDict->GetArrayBy("Range");
|
m_nOutputs = 0;
|
if (pRanges) {
|
m_nOutputs = pRanges->GetCount() / 2;
|
m_pRanges = FX_Alloc2D(FX_FLOAT, m_nOutputs, 2);
|
for (uint32_t i = 0; i < m_nOutputs * 2; i++)
|
m_pRanges[i] = pRanges->GetFloatAt(i);
|
}
|
uint32_t old_outputs = m_nOutputs;
|
if (!v_Init(pObj))
|
return FALSE;
|
if (m_pRanges && m_nOutputs > old_outputs) {
|
m_pRanges = FX_Realloc(FX_FLOAT, m_pRanges, m_nOutputs * 2);
|
if (m_pRanges) {
|
FXSYS_memset(m_pRanges + (old_outputs * 2), 0,
|
sizeof(FX_FLOAT) * (m_nOutputs - old_outputs) * 2);
|
}
|
}
|
return TRUE;
|
}
|
|
FX_BOOL CPDF_Function::Call(FX_FLOAT* inputs,
|
uint32_t ninputs,
|
FX_FLOAT* results,
|
int& nresults) const {
|
if (m_nInputs != ninputs) {
|
return FALSE;
|
}
|
nresults = m_nOutputs;
|
for (uint32_t i = 0; i < m_nInputs; i++) {
|
if (inputs[i] < m_pDomains[i * 2])
|
inputs[i] = m_pDomains[i * 2];
|
else if (inputs[i] > m_pDomains[i * 2 + 1])
|
inputs[i] = m_pDomains[i * 2] + 1;
|
}
|
v_Call(inputs, results);
|
if (m_pRanges) {
|
for (uint32_t i = 0; i < m_nOutputs; i++) {
|
if (results[i] < m_pRanges[i * 2])
|
results[i] = m_pRanges[i * 2];
|
else if (results[i] > m_pRanges[i * 2 + 1])
|
results[i] = m_pRanges[i * 2 + 1];
|
}
|
}
|
return TRUE;
|
}
|
|
const CPDF_SampledFunc* CPDF_Function::ToSampledFunc() const {
|
return m_Type == Type::kType0Sampled
|
? static_cast<const CPDF_SampledFunc*>(this)
|
: nullptr;
|
}
|
|
const CPDF_ExpIntFunc* CPDF_Function::ToExpIntFunc() const {
|
return m_Type == Type::kType2ExpotentialInterpolation
|
? static_cast<const CPDF_ExpIntFunc*>(this)
|
: nullptr;
|
}
|
|
const CPDF_StitchFunc* CPDF_Function::ToStitchFunc() const {
|
return m_Type == Type::kType3Stitching
|
? static_cast<const CPDF_StitchFunc*>(this)
|
: nullptr;
|
}
|