// Copyright 2014 The Chromium Authors. All rights reserved.
|
// Use of this source code is governed by a BSD-style license that can be
|
// found in the LICENSE file.
|
|
#ifndef PDFIUM_THIRD_PARTY_SAFE_MATH_IMPL_H_
|
#define PDFIUM_THIRD_PARTY_SAFE_MATH_IMPL_H_
|
|
#include <stdint.h>
|
|
#include <cmath>
|
#include <cstdlib>
|
#include <limits>
|
#include <type_traits>
|
|
#include "safe_conversions.h"
|
#include "third_party/base/macros.h"
|
|
namespace pdfium {
|
namespace base {
|
namespace internal {
|
|
// Everything from here up to the floating point operations is portable C++,
|
// but it may not be fast. This code could be split based on
|
// platform/architecture and replaced with potentially faster implementations.
|
|
// Integer promotion templates used by the portable checked integer arithmetic.
|
template <size_t Size, bool IsSigned>
|
struct IntegerForSizeAndSign;
|
template <>
|
struct IntegerForSizeAndSign<1, true> {
|
typedef int8_t type;
|
};
|
template <>
|
struct IntegerForSizeAndSign<1, false> {
|
typedef uint8_t type;
|
};
|
template <>
|
struct IntegerForSizeAndSign<2, true> {
|
typedef int16_t type;
|
};
|
template <>
|
struct IntegerForSizeAndSign<2, false> {
|
typedef uint16_t type;
|
};
|
template <>
|
struct IntegerForSizeAndSign<4, true> {
|
typedef int32_t type;
|
};
|
template <>
|
struct IntegerForSizeAndSign<4, false> {
|
typedef uint32_t type;
|
};
|
template <>
|
struct IntegerForSizeAndSign<8, true> {
|
typedef int64_t type;
|
};
|
template <>
|
struct IntegerForSizeAndSign<8, false> {
|
typedef uint64_t type;
|
};
|
|
// WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to
|
// support 128-bit math, then the ArithmeticPromotion template below will need
|
// to be updated (or more likely replaced with a decltype expression).
|
|
template <typename Integer>
|
struct UnsignedIntegerForSize {
|
typedef typename std::enable_if<
|
std::numeric_limits<Integer>::is_integer,
|
typename IntegerForSizeAndSign<sizeof(Integer), false>::type>::type type;
|
};
|
|
template <typename Integer>
|
struct SignedIntegerForSize {
|
typedef typename std::enable_if<
|
std::numeric_limits<Integer>::is_integer,
|
typename IntegerForSizeAndSign<sizeof(Integer), true>::type>::type type;
|
};
|
|
template <typename Integer>
|
struct TwiceWiderInteger {
|
typedef typename std::enable_if<
|
std::numeric_limits<Integer>::is_integer,
|
typename IntegerForSizeAndSign<
|
sizeof(Integer) * 2,
|
std::numeric_limits<Integer>::is_signed>::type>::type type;
|
};
|
|
template <typename Integer>
|
struct PositionOfSignBit {
|
static const typename std::enable_if<std::numeric_limits<Integer>::is_integer,
|
size_t>::type value =
|
8 * sizeof(Integer) - 1;
|
};
|
|
// Helper templates for integer manipulations.
|
|
template <typename T>
|
bool HasSignBit(T x) {
|
// Cast to unsigned since right shift on signed is undefined.
|
return !!(static_cast<typename UnsignedIntegerForSize<T>::type>(x) >>
|
PositionOfSignBit<T>::value);
|
}
|
|
// This wrapper undoes the standard integer promotions.
|
template <typename T>
|
T BinaryComplement(T x) {
|
return ~x;
|
}
|
|
// Here are the actual portable checked integer math implementations.
|
// TODO(jschuh): Break this code out from the enable_if pattern and find a clean
|
// way to coalesce things into the CheckedNumericState specializations below.
|
|
template <typename T>
|
typename std::enable_if<std::numeric_limits<T>::is_integer, T>::type
|
CheckedAdd(T x, T y, RangeConstraint* validity) {
|
// Since the value of x+y is undefined if we have a signed type, we compute
|
// it using the unsigned type of the same size.
|
typedef typename UnsignedIntegerForSize<T>::type UnsignedDst;
|
UnsignedDst ux = static_cast<UnsignedDst>(x);
|
UnsignedDst uy = static_cast<UnsignedDst>(y);
|
UnsignedDst uresult = ux + uy;
|
// Addition is valid if the sign of (x + y) is equal to either that of x or
|
// that of y.
|
if (std::numeric_limits<T>::is_signed) {
|
if (HasSignBit(BinaryComplement((uresult ^ ux) & (uresult ^ uy))))
|
*validity = RANGE_VALID;
|
else // Direction of wrap is inverse of result sign.
|
*validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW;
|
|
} else { // Unsigned is either valid or overflow.
|
*validity = BinaryComplement(x) >= y ? RANGE_VALID : RANGE_OVERFLOW;
|
}
|
return static_cast<T>(uresult);
|
}
|
|
template <typename T>
|
typename std::enable_if<std::numeric_limits<T>::is_integer, T>::type
|
CheckedSub(T x, T y, RangeConstraint* validity) {
|
// Since the value of x+y is undefined if we have a signed type, we compute
|
// it using the unsigned type of the same size.
|
typedef typename UnsignedIntegerForSize<T>::type UnsignedDst;
|
UnsignedDst ux = static_cast<UnsignedDst>(x);
|
UnsignedDst uy = static_cast<UnsignedDst>(y);
|
UnsignedDst uresult = ux - uy;
|
// Subtraction is valid if either x and y have same sign, or (x-y) and x have
|
// the same sign.
|
if (std::numeric_limits<T>::is_signed) {
|
if (HasSignBit(BinaryComplement((uresult ^ ux) & (ux ^ uy))))
|
*validity = RANGE_VALID;
|
else // Direction of wrap is inverse of result sign.
|
*validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW;
|
|
} else { // Unsigned is either valid or underflow.
|
*validity = x >= y ? RANGE_VALID : RANGE_UNDERFLOW;
|
}
|
return static_cast<T>(uresult);
|
}
|
|
// Integer multiplication is a bit complicated. In the fast case we just
|
// we just promote to a twice wider type, and range check the result. In the
|
// slow case we need to manually check that the result won't be truncated by
|
// checking with division against the appropriate bound.
|
template <typename T>
|
typename std::enable_if<std::numeric_limits<T>::is_integer &&
|
sizeof(T) * 2 <= sizeof(uintmax_t),
|
T>::type
|
CheckedMul(T x, T y, RangeConstraint* validity) {
|
typedef typename TwiceWiderInteger<T>::type IntermediateType;
|
IntermediateType tmp =
|
static_cast<IntermediateType>(x) * static_cast<IntermediateType>(y);
|
*validity = DstRangeRelationToSrcRange<T>(tmp);
|
return static_cast<T>(tmp);
|
}
|
|
template <typename T>
|
typename std::enable_if<std::numeric_limits<T>::is_integer &&
|
std::numeric_limits<T>::is_signed &&
|
(sizeof(T) * 2 > sizeof(uintmax_t)),
|
T>::type
|
CheckedMul(T x, T y, RangeConstraint* validity) {
|
// If either side is zero then the result will be zero.
|
if (!x || !y) {
|
return RANGE_VALID;
|
|
} else if (x > 0) {
|
if (y > 0)
|
*validity =
|
x <= std::numeric_limits<T>::max() / y ? RANGE_VALID : RANGE_OVERFLOW;
|
else
|
*validity = y >= std::numeric_limits<T>::min() / x ? RANGE_VALID
|
: RANGE_UNDERFLOW;
|
|
} else {
|
if (y > 0)
|
*validity = x >= std::numeric_limits<T>::min() / y ? RANGE_VALID
|
: RANGE_UNDERFLOW;
|
else
|
*validity =
|
y >= std::numeric_limits<T>::max() / x ? RANGE_VALID : RANGE_OVERFLOW;
|
}
|
|
return x * y;
|
}
|
|
template <typename T>
|
typename std::enable_if<std::numeric_limits<T>::is_integer &&
|
!std::numeric_limits<T>::is_signed &&
|
(sizeof(T) * 2 > sizeof(uintmax_t)),
|
T>::type
|
CheckedMul(T x, T y, RangeConstraint* validity) {
|
*validity = (y == 0 || x <= std::numeric_limits<T>::max() / y)
|
? RANGE_VALID
|
: RANGE_OVERFLOW;
|
return x * y;
|
}
|
|
// Division just requires a check for an invalid negation on signed min/-1.
|
template <typename T>
|
T CheckedDiv(T x,
|
T y,
|
RangeConstraint* validity,
|
typename std::enable_if<std::numeric_limits<T>::is_integer,
|
int>::type = 0) {
|
if (std::numeric_limits<T>::is_signed && x == std::numeric_limits<T>::min() &&
|
y == static_cast<T>(-1)) {
|
*validity = RANGE_OVERFLOW;
|
return std::numeric_limits<T>::min();
|
}
|
|
*validity = RANGE_VALID;
|
return x / y;
|
}
|
|
template <typename T>
|
typename std::enable_if<std::numeric_limits<T>::is_integer &&
|
std::numeric_limits<T>::is_signed,
|
T>::type
|
CheckedMod(T x, T y, RangeConstraint* validity) {
|
*validity = y > 0 ? RANGE_VALID : RANGE_INVALID;
|
return x % y;
|
}
|
|
template <typename T>
|
typename std::enable_if<std::numeric_limits<T>::is_integer &&
|
!std::numeric_limits<T>::is_signed,
|
T>::type
|
CheckedMod(T x, T y, RangeConstraint* validity) {
|
*validity = RANGE_VALID;
|
return x % y;
|
}
|
|
template <typename T>
|
typename std::enable_if<std::numeric_limits<T>::is_integer &&
|
std::numeric_limits<T>::is_signed,
|
T>::type
|
CheckedNeg(T value, RangeConstraint* validity) {
|
*validity =
|
value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW;
|
// The negation of signed min is min, so catch that one.
|
return -value;
|
}
|
|
template <typename T>
|
typename std::enable_if<std::numeric_limits<T>::is_integer &&
|
!std::numeric_limits<T>::is_signed,
|
T>::type
|
CheckedNeg(T value, RangeConstraint* validity) {
|
// The only legal unsigned negation is zero.
|
*validity = value ? RANGE_UNDERFLOW : RANGE_VALID;
|
return static_cast<T>(
|
-static_cast<typename SignedIntegerForSize<T>::type>(value));
|
}
|
|
template <typename T>
|
typename std::enable_if<std::numeric_limits<T>::is_integer &&
|
std::numeric_limits<T>::is_signed,
|
T>::type
|
CheckedAbs(T value, RangeConstraint* validity) {
|
*validity =
|
value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW;
|
return std::abs(value);
|
}
|
|
template <typename T>
|
typename std::enable_if<std::numeric_limits<T>::is_integer &&
|
!std::numeric_limits<T>::is_signed,
|
T>::type
|
CheckedAbs(T value, RangeConstraint* validity) {
|
// Absolute value of a positive is just its identiy.
|
*validity = RANGE_VALID;
|
return value;
|
}
|
|
// These are the floating point stubs that the compiler needs to see. Only the
|
// negation operation is ever called.
|
#define BASE_FLOAT_ARITHMETIC_STUBS(NAME) \
|
template <typename T> \
|
typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type \
|
Checked##NAME(T, T, RangeConstraint*) { \
|
NOTREACHED(); \
|
return 0; \
|
}
|
|
BASE_FLOAT_ARITHMETIC_STUBS(Add)
|
BASE_FLOAT_ARITHMETIC_STUBS(Sub)
|
BASE_FLOAT_ARITHMETIC_STUBS(Mul)
|
BASE_FLOAT_ARITHMETIC_STUBS(Div)
|
BASE_FLOAT_ARITHMETIC_STUBS(Mod)
|
|
#undef BASE_FLOAT_ARITHMETIC_STUBS
|
|
template <typename T>
|
typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedNeg(
|
T value,
|
RangeConstraint*) {
|
return -value;
|
}
|
|
template <typename T>
|
typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedAbs(
|
T value,
|
RangeConstraint*) {
|
return std::abs(value);
|
}
|
|
// Floats carry around their validity state with them, but integers do not. So,
|
// we wrap the underlying value in a specialization in order to hide that detail
|
// and expose an interface via accessors.
|
enum NumericRepresentation {
|
NUMERIC_INTEGER,
|
NUMERIC_FLOATING,
|
NUMERIC_UNKNOWN
|
};
|
|
template <typename NumericType>
|
struct GetNumericRepresentation {
|
static const NumericRepresentation value =
|
std::numeric_limits<NumericType>::is_integer
|
? NUMERIC_INTEGER
|
: (std::numeric_limits<NumericType>::is_iec559 ? NUMERIC_FLOATING
|
: NUMERIC_UNKNOWN);
|
};
|
|
template <typename T, NumericRepresentation type =
|
GetNumericRepresentation<T>::value>
|
class CheckedNumericState {};
|
|
// Integrals require quite a bit of additional housekeeping to manage state.
|
template <typename T>
|
class CheckedNumericState<T, NUMERIC_INTEGER> {
|
private:
|
T value_;
|
RangeConstraint validity_;
|
|
public:
|
template <typename Src, NumericRepresentation type>
|
friend class CheckedNumericState;
|
|
CheckedNumericState() : value_(0), validity_(RANGE_VALID) {}
|
|
template <typename Src>
|
CheckedNumericState(Src value, RangeConstraint validity)
|
: value_(value),
|
validity_(GetRangeConstraint(validity |
|
DstRangeRelationToSrcRange<T>(value))) {
|
COMPILE_ASSERT(std::numeric_limits<Src>::is_specialized,
|
argument_must_be_numeric);
|
}
|
|
// Copy constructor.
|
template <typename Src>
|
CheckedNumericState(const CheckedNumericState<Src>& rhs)
|
: value_(static_cast<T>(rhs.value())),
|
validity_(GetRangeConstraint(
|
rhs.validity() | DstRangeRelationToSrcRange<T>(rhs.value()))) {}
|
|
template <typename Src>
|
explicit CheckedNumericState(
|
Src value,
|
typename std::enable_if<std::numeric_limits<Src>::is_specialized,
|
int>::type = 0)
|
: value_(static_cast<T>(value)),
|
validity_(DstRangeRelationToSrcRange<T>(value)) {}
|
|
RangeConstraint validity() const { return validity_; }
|
T value() const { return value_; }
|
};
|
|
// Floating points maintain their own validity, but need translation wrappers.
|
template <typename T>
|
class CheckedNumericState<T, NUMERIC_FLOATING> {
|
private:
|
T value_;
|
|
public:
|
template <typename Src, NumericRepresentation type>
|
friend class CheckedNumericState;
|
|
CheckedNumericState() : value_(0.0) {}
|
|
template <typename Src>
|
CheckedNumericState(
|
Src value,
|
RangeConstraint validity,
|
typename std::enable_if<std::numeric_limits<Src>::is_integer, int>::type =
|
0) {
|
switch (DstRangeRelationToSrcRange<T>(value)) {
|
case RANGE_VALID:
|
value_ = static_cast<T>(value);
|
break;
|
|
case RANGE_UNDERFLOW:
|
value_ = -std::numeric_limits<T>::infinity();
|
break;
|
|
case RANGE_OVERFLOW:
|
value_ = std::numeric_limits<T>::infinity();
|
break;
|
|
case RANGE_INVALID:
|
value_ = std::numeric_limits<T>::quiet_NaN();
|
break;
|
|
default:
|
NOTREACHED();
|
}
|
}
|
|
template <typename Src>
|
explicit CheckedNumericState(
|
Src value,
|
typename std::enable_if<std::numeric_limits<Src>::is_specialized,
|
int>::type = 0)
|
: value_(static_cast<T>(value)) {}
|
|
// Copy constructor.
|
template <typename Src>
|
CheckedNumericState(const CheckedNumericState<Src>& rhs)
|
: value_(static_cast<T>(rhs.value())) {}
|
|
RangeConstraint validity() const {
|
return GetRangeConstraint(value_ <= std::numeric_limits<T>::max(),
|
value_ >= -std::numeric_limits<T>::max());
|
}
|
T value() const { return value_; }
|
};
|
|
// For integers less than 128-bit and floats 32-bit or larger, we can distil
|
// C/C++ arithmetic promotions down to two simple rules:
|
// 1. The type with the larger maximum exponent always takes precedence.
|
// 2. The resulting type must be promoted to at least an int.
|
// The following template specializations implement that promotion logic.
|
enum ArithmeticPromotionCategory {
|
LEFT_PROMOTION,
|
RIGHT_PROMOTION,
|
DEFAULT_PROMOTION
|
};
|
|
template <typename Lhs,
|
typename Rhs = Lhs,
|
ArithmeticPromotionCategory Promotion =
|
(MaxExponent<Lhs>::value > MaxExponent<Rhs>::value)
|
? (MaxExponent<Lhs>::value > MaxExponent<int>::value
|
? LEFT_PROMOTION
|
: DEFAULT_PROMOTION)
|
: (MaxExponent<Rhs>::value > MaxExponent<int>::value
|
? RIGHT_PROMOTION
|
: DEFAULT_PROMOTION) >
|
struct ArithmeticPromotion;
|
|
template <typename Lhs, typename Rhs>
|
struct ArithmeticPromotion<Lhs, Rhs, LEFT_PROMOTION> {
|
typedef Lhs type;
|
};
|
|
template <typename Lhs, typename Rhs>
|
struct ArithmeticPromotion<Lhs, Rhs, RIGHT_PROMOTION> {
|
typedef Rhs type;
|
};
|
|
template <typename Lhs, typename Rhs>
|
struct ArithmeticPromotion<Lhs, Rhs, DEFAULT_PROMOTION> {
|
typedef int type;
|
};
|
|
// We can statically check if operations on the provided types can wrap, so we
|
// can skip the checked operations if they're not needed. So, for an integer we
|
// care if the destination type preserves the sign and is twice the width of
|
// the source.
|
template <typename T, typename Lhs, typename Rhs>
|
struct IsIntegerArithmeticSafe {
|
static const bool value = !std::numeric_limits<T>::is_iec559 &&
|
StaticDstRangeRelationToSrcRange<T, Lhs>::value ==
|
NUMERIC_RANGE_CONTAINED &&
|
sizeof(T) >= (2 * sizeof(Lhs)) &&
|
StaticDstRangeRelationToSrcRange<T, Rhs>::value !=
|
NUMERIC_RANGE_CONTAINED &&
|
sizeof(T) >= (2 * sizeof(Rhs));
|
};
|
|
} // namespace internal
|
} // namespace base
|
} // namespace pdfium
|
|
#endif // PDFIUM_THIRD_PARTY_SAFE_MATH_IMPL_H_
|